22 September, 2021 ## WHO Air Quality Guidelines 2021 – Aiming for healthier air for all A joint statement by medical, public health, scientific societies and patient representative organisations After years of intensive research and deliberations with experts across the globe, the World Health Organization (WHO) updated its 2005 Global Air Quality Guidelines (AQG) in September 2021 (WHO 2021; WHO 2017). The new air quality guidelines (WHO AQG) are ambitious and reflect the large impact that air pollution has on global health. They recommend aiming for annual mean concentrations of PM_{2.5} not exceeding 5 μ g/m³ and NO₂ not exceeding 10 μ g/m³, and the peak season mean 8-hr ozone concentration not exceeding 60 μ g/m³ (WHO 2021). For reference, the corresponding 2005 WHO guideline values for PM_{2.5} and NO₂ were, respectively, 10 μ g/m³ and 40 μ g/m³ with no recommendation issued for long-term ozone concentrations (WHO 2006). While the guidelines are not legally binding, we hope they will influence air quality policy across the globe for many years to come. The updated WHO AQG have become so necessary as an overwhelming body of evidence has accumulated over the past two decades, demonstrating that health effects of air pollution are serious and can affect nearly all organ systems of the human body (Thurston et al. 2017). Importantly, recent studies and large research programmes consistently show that the adverse effects of air pollution are not only limited to high exposures; harmful health effects can be observed all the way down to very low concentration levels, with no observable thresholds below which exposure can be considered safe (Brauer et al. 2019; Brunekreef et al. 2021; Dominici et al. 2019). There is now broad expert consensus that air pollution is a major global public health risk factor and puts an enormous financial burden on societies. Outdoor and household air pollution together accounted for approximately 12% of all deaths in 2019. Air pollution currently ranks fourth among major risk factors for global disease and mortality, only behind hypertension, smoking and dietary factors (Murray et al. 2020). In terms of economic burden, the estimated global health-related external costs (i.e., those borne by society as a whole) were US\$ 5 trillion in 2013 with an additional US\$ 225 billion in lost labour productivity (World Bank Group 2016). For the WHO European Region, the overall annual economic cost of health impacts and mortality from air pollution, including estimates for morbidity costs, stood at US\$ 1.575 trillion (WHO Regional Office for Europe, OECD 2015). The most important message of the updated WHO AQG is that each reduction in the outdoor concentrations of key air pollutants brings health benefits to the surrounding population, even in places which already have low pollution concentrations. Moreover, linear exposure-response relationships down to the lowest observable concentrations show that every individual will benefit from cleaner air (Huangfu and Atkinson 2020; Lee et al. 2020; Chen and Hoek 2020; Orellano et al. 2020; Zheng et al. 2021). These findings provide critical input into clean air policies and regulation around the world. They also are key to estimating the potential health and economic benefits from policies that reduce exposure to air pollution. Recognising that the adverse health effects of pollution exposure can be seen at all, even at the lowest observed levels of pollution concentrations, is a milestone for cleaner air and better health policies. It offers a wake-up call, to reconsider current air quality legislation and regulations. To maximise health benefits, we now understand better the importance of implementing measures to reduce average exposures of all people. Such an approach must complement reductions in exposure at "hotspots" with high levels of air pollution, in particular to address known inequities owing to socioeconomic conditions, increased vulnerability of the residential population, and economic activities (Hooper and Kaufman, 2018). To tackle the health effects of air pollution, bold air quality actions are needed at all levels – international, national, local – and across all sectors such as transport, energy, industry, agriculture and residential. Most jurisdictions with clean air regulations have relied on fixed limit values with little incentive to further reduce air pollution levels once compliance with the limit value is achieved (Kutlar Joss et al. 2017). Given the evidence that health effects occur all the way down to very low concentration levels, future clean air policies must include incentives for progressive lowering of exposures of the entire population, thereby improving health for all. What is needed is a paradigm change from relying solely on fixed limit values, with a shift towards the concept of combining fixed limit values with a continuous reduction of the average exposure. For example, the current European Union (EU) Ambient Air Quality Directive already contains a non-binding average exposure reduction target (European Commission 2008). The upcoming 2022 revision of the EU Ambient Air Quality Directive will offer the chance to lead the way and implement binding average exposure reduction goals for air pollutants in combination with lowered fixed limit values. Programmes that reduce air pollutant emissions provide enormous air quality and health benefits which increase over time. The estimated health benefits of improved air quality outweigh by far the implementation costs of air quality actions. For the US, it has been estimated that the benefits from decreased mortality, lower medical expenditures for air pollution-related diseases, and higher productivity of workers are around 30 times greater than the costs of the Clean Air Act, resulting in net improvements of economic growth, and population welfare (U.S. E.P.A. 2015). In China, public health benefits were 50% greater than the costs for air quality improvement measures (Zhang et al. 2019). Similarly, for the EU, additional clean air and climate policies beyond the current obligations will lead to net benefits with positive macro-economic implications (Amann et al. 2017). Indeed, the cost effectiveness of air quality actions is enhanced by the close link between air pollution and greenhouse gas emissions. A reduction of air pollution emissions will also feed into efforts for climate neutrality and vice versa, making benefits from investments in one area count twice (Amann et al. 2014, IPCC 2021). ### Conclusions Air pollution is a major global public health threat that causes a range of adverse health effects, even at the lowest observable concentrations. There is ample evidence to strongly support government action to reduce air pollution and address climate change simultaneously. The updated WHO AQG are bold and stress the importance of lowering air pollution concentrations at every level. The benefits are clear: lowering air pollution levels will lead to enormous improvements in public health for people of all ages breathing cleaner air. We support the recommendations of the new WHO AQG, and urge nations to use the WHO AQG as a guide for ambitious air quality and emission reduction policies around the world. Signatures of the undersigned organisations: 1.4. Prof. Marc Humbert, President, European Respiratory Society Mark Nieuwenhuijsen, President, International Society of Environmental Epidemiology X- Dr Kjeld Hansen, Chair, European Lung Foundation Duryf Prof. Donald M. Lloyd-Jones, President, American Heart Association Jam Skrape Prof. Lynn Schnapp, President, American Thoracic Society William G. Cance, MD FACS, Chief Medical and Scientific Officer, American Cancer Society, Inc. Prof. Tiffany Latrice Gary-Webb, Chair, the American Public Health Association Prof. John Middleton, President, the Association of Schools of Public Health in the European Region Dr P.P. Mohanan, President, Cardiological Society of India Prof. Matti Aapro, President, European Cancer Organisation Prof. Fausto Pinto, President, World Heart Federation Prof. John Upham, President, The Thoracic Society of Australia & New Zealand Dr Nebojsa Tasic, President, Hypertension, Infarction, and Stroke Prevention Association Asia-Pacific Society of Respirology Dr Riccardo Asero, President, the Italian Association of Allergologists and Immunologists Prof. Federica Zanetto, President, Associazione Culturale Pediatri Dr Adriano Vaghi, President, Italian Thoracic Society Prof. Gianenrico Senna, President, Società Italiana Allergologia, Asma ed Immunologia Clinica Prof. Lucia Bisceglia, President, Italian Association of Epidemiology Prof. Carla Ancona, President, Italian Network of Environment and Health Dr Zeina Aoun, President, Lebanese Pulmonary Society Associate Prof. Dr. Pang Yong Kek, President, Malaysian Thoracic Society Prof. Luca Richeldi, President, Italian Respiratory Society Prof. Oya Itil, President, Turkish Thoracic Society Prof. Paweł Śliwiński, President, Polskie Towarzystwo Chorób Płuc Prof. Ji Tae Choung, President, Korean Academy of Medical Sciences Prof. Hae-Kwan Cheong, President; Prof. Sin Kam, Chair of the Board, the Korean Society for Preventive Medicine Prof. Soon Young Lee, President, Korean Society of Epidemiology Jungham Coo Prof. Jung-Wan Koo, President, Korean Society of Occupational and Environmental Medicine Prof. Susana I. García, President, Ibero-American Society for Environmental Health Prof. Mauro Silvestrini, President, Italian Stroke Association Prof. Fabio Midulla, President, Società Italiana per le Malattie Respiratorie Infantili Prof. Ülkü Yılmaz, President, Turkish Respiratory Society Prof. Kamlesh Tewary, President, Association of Physicians of India Prof. Irma de Godoy, President, Sociedade Brasileira de Pneumonologia e Tisiologia Prof. Philip J. Landrigan, President, Collegium Ramazzini Canadian Lung Association Prof. Annamaria Staiano, President, Società Italiana di Pediatria Prof. Stylianos Loukides, President, Hellenic Thoracic Society mu Tam Dr Jukka Takala, President, International Commission on Occupational Health Dr Louise M. Perkins, President, Foundation for Sarcoidosis Research Claudia Spina, President, Associazione Italiana Bronchiettasie Shane Fitch, President, Lovexair Alpha 1 Spain FairLife Dr Catia Cilloniz Campos, President, the Association for the Support of Patients with Pneumonia and their Families European Cancer Patient Coalition (ECPC) Natalia Maeva, President, Bulgarian Society of the patients with PH JI Knist Jill Fairweather, Co-founder, Aspergillosis Trust La Federación Española de Asociaciones de pacientes alérgicos y con Enfermedades Respiratorias (FENAER) Peter Bruce, Chair, Pulmonary Fibrosis Trust Delfina Pérez, President, Asociación de Pacientes con EPOC (APEPOC) Prof. Chantal Raherison, President, SPLF German Society for Epidemiology German Society for Public Health Deutsche Gesellschaft für Kardiologie Dr Mark A. Ferro, Canadian Society for Epidemiology and Biostatistics Netherlands Respiratory Society Patiëntenvereniging longtransplantatie UZ Leuve (HALO vzw) Associazione Nazionale Alfa 1-At ODV Prof. Dr Christophe von Garnier, President, Swiss Society of Pneumology Helping Hands Foundation Cuy's Marts Prof. Guy Marks, President, International Union Against Tuberculosis and Lung Disease Anne-Maine Baird Dr Anne-Marie Baird, President, Lung Cancer Europe Federasma e Allergie Taiwan Society of Pulmonary and Critical Care Medicine APH Macedonia "Moment plus" Prof. Coenraad Koegelenberg, President, South African Thoracic Society German Association for Medical Informatics, Biometry and Epidemiology German Society for Social Medicine and Prevention Hilde De Keyser, Chief Executive Officer, CF Europe M.R. Rutgers, Director, Longfonds Prof. Camille Raynes-Greenow, Chair, International Network for Epidemiology in Policy Dr Neil Schluger, Co-Founder, Inspire: Health Advocates for Clean Air Dr Tewodros H. Gebremariam, President, Ethiopian Thoracic Society Syaogi Ahmed 'Azizy, President, Center for Indonesian Medical Students' Activities Marion Wilkens, 1st Chairsperson, Alpha 1 Germany Carla Jones, President, European Federation of Allergy and Airways Diseases Patients' Associations Floris Italianer, Director, Dutch Heart Foundation Gesellschaft für Pädiatrische Pneumologie Mahrus Sparre Jug Kristina Sparreljung, Secretary General, the Swedish Heart-Lung Foundation ### Sarcoidosis UK Sarah Woolnough, Chief Executive, Asthma UK/British Lung Foundation Eva Garcia, President, Asociación Nacional de Hipertensión Pulmonar **Breathe Easy** European Chronic Disease Alliance Dr Milka Sokolovic, Director-General, European Public Health Alliance Prof. Dr Marc Saez, Main Researcher, Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Spain and CIBER of Epidemiology and Public Health (CIBERESP) Alpha 1 Belgium American Lung Association Associazione Nazionale Alfa 1 Belgian Respiratory Society European Alliance of Associations for Rheumatology Korean Academy of Tuberculosis and Respiratory Diseases Stichting Huize Aarde Swedish Asthma and Allergy Association European Chronic Disease Alliance Association for Respiratory Technology & Physiology (ARTP) ## Logos: # BREATHE the lung association SCHWEIZERISCHE GESELLSCHAFT FÜR PNEUMOLOGIE SOCIÉTÉ SUISSE DE PNEUMOLOGIE SOCIETÀ SVIZZERA DI PNEUMOLOGIA International Union Against Tuberculosis and Lung Disease Federazione Italiana Pazienti Deutsche Gesellschaft für Sozialmedizin und Prävention **Diseases Patients' Associations** Members of the writing group: Barbara Hoffmann, Hanna Boogaard, Audrey de Nazelle, Zorana J. Andersen, Michael Abramson, Michael Brauer, Bert Brunekreef, Francesco Forastiere, Wei Huang, Haidong Kan, Joel Kaufman, Klea Katsouyanni, Michal Krzyzanowski, Nino Künzli, Francine Laden, Mark Nieuwenhuijsen, Adetoun Mustapha, Pippa Powell, Mary Rice, Aina Roca-Barceló, Charlotte Roscoe, Agnes Soares, Kurt Straif, George Thurston # Publication bibliography Amann, Markus; Borken-Kleefeld, Jens; Cofala, Janusz; Heyes, Chris; Hoglund-Isaksson, Lena; Kiesewetter, Gregor et al. (2017): Support to the development of the Second Clean Air Outlook. Specific Contract 6 under Framework Contract. European Commission; International Institute for Applied Systems Analysis (IIASA) (ENV.C.3/FRA/2017/0012). Amann, Markus; Heyes, Chris; Kiesewetter, Gregor; Schöpp, Wolfgang; Wagner, Fabian (2014): Air quality. Complementary impact assessment on interactions between EU air quality policy and climate and energy policy. Edited by European Parliamentary Research Service. European Parliament. Brussels (COM(2013)0920 final). Brauer, Michael; Brook, Jeffrey R.; Christidis, Tanya; Chu, Yen; Crouse, Dan L.; Erickson, Anders et al. (2019): Mortality–Air Pollution Associations in Low- Exposure Environments (MAPLE): Phase 1. In Research Reports: Health Effects Institute 2019. Brunekreef, B; Strak, M; Chen, J; Andersen, Z; Bauwelinck, M (2021): Mortality and Morbidity Effects of Long-Term Exposure To Low-Level PM2.5, Black Carbon, NO2 and O3: An Analysis of European Cohorts - ELAPSE project: Effects of Low-Level Air Pollution. In *Health Effects Institute (HEI) Research Report 208*, https://www.healtheffects.org/publication/mortality-and-morbidity-effects-long-term-exposure-low-level-pm25-bc-no2-and-o3-analysis. Checked on 9/2/2021. Chen, Jie; Hoek, Gerard (2020): Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. In *Environment International* 143, p. 105974. DOI: 10.1016/j.envint.2020.105974. Dominici, Francesca; Schwartz, Joel; Di, Qian; Braun, Danielle; Choirat, Christine; Zanobetti, Antonella (2019): Assessing Adverse Health Effects of Long-Term Exposure to Low Levels of Ambient Air Pollution: Phase 1. In *Research Reports:* Health Effects Institute 2019. European Commission (2008.): Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe (OJL 152). Hooper, L. G., & Kaufman, J. D. (2018). Ambient Air Pollution and Clinical Implications for Susceptible Populations. *Ann Am Thorac Soc* Vol 15, Supplement 2, pp S64–S68 https://Doi.Org/10.1513/AnnalsATS.201707-574MG, 15, S64–S68. https://doi.org/10.1513/ANNALSATS.201707-574MG Huangfu, Peijue; Atkinson, Richard (2020): Long-term exposure to NO2 and O3 and all-.cause and respiratory mortality: A systematic review and meta-analysis. In *Environment International* 144, p. 105998. DOI: 10.1016/j.envint.2020.105998. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press. In Press. Kutlar Joss, Meltem; Eeftens, Marloes; Gintowt, Emily; Kappeler, Ron; Künzli, Nino (2017): Time to harmonize national ambient air quality standards. In *Int J Public Health* 62 (4), pp. 453–462. DOI: 10.1007/s00038-017-0952-y. Lee, Kuan Ken; Spath, Nicholas; Miller, Mark R.; Mills, Nicholas L.; Shah, Anoop S. V. (2020): Short-term exposure to carbon monoxide and myocardial infarction: A systematic review and meta-analysis. In *Environment International* 143, p. 105901. DOI: 10.1016/j.envint.2020.105901. Murray, Christopher J. L.; Aravkin, Aleksandr Y.; Zheng, Peng; Abbafati, Cristiana; Abbas, Kaja M.; Abbasi-Kangevari, Mohsen et al. (2020): Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. In *The Lancet* 396 (10258), pp. 1223–1249. DOI: 10.1016/S0140-6736(20)30752-2. Orellano, Pablo; Reynoso, Julieta; Quaranta, Nancy; Bardach, Ariel; Ciapponi, Agustin (2020): Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis. In *Environment International* 142, p. 105876. DOI: 10.1016/j.envint.2020.105876. Thurston, George D.; Kipen, Howard; Annesi-Maesano, Isabella; Balmes, John; Brook, Robert D.; Cromar, Kevin et al. (2017): A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. In *The European respiratory journal* 49 (1). DOI: 10.1183/13993003.00419-2016. U.S. EPA. (2015): Benefits and Costs of the Clean Air Act 1990-2020, the Second Prospective Study. U.S. Environmental Protection Agency. Washington, DC. Available online at https://www.epa.gov/clean-air-act-overview/benefits-and-costs-clean-air-act-1990-2020-second-prospective-study, checked on 6/4/2021. WHO Regional Office for Europe, OECD (2015): Economic cost of the health impact of air pollution in Europe: Clean air, health and wealth. Edited by WHO Regional Office for Europe, Copenhagen, Denmark. World Health Organization (2006): Air Quality Guidelines, Global Update 2005. WHO Regional Office for Europe, Copenhagen, Denmark. World Health Organization (2021): WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, suflur dioxide and carbon monoxide. Executive summary. Geneva: World Health Organization; Licence: CCBY-NC-SA3.0 IGO. World Health Organization (2017): Evolution of WHO air quality guidelines: past, present and future. WHO Regional Office for Europe, Copenhagen, Denmark. Available online at https://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2017/evolution-of-who-air-quality-guidelines-past,-present-and-future-2017, checked on 23/08/2021. World Bank Group (2016): The cost of air pollution: strengthening the economic case for action (English). Washington, D.C. (Working Paper, 108141). Available online at http://documents.worldbank.org/curated/en/781521473177013155/The-cost-of-air-pollution-strengthening-the-economic-case-for-action, updated on 9/8/2016, checked on 8/3/2021. Zhang, Jing; Jiang, Hongqiang; Zhang, Wei; Ma, Guoxia; Wang, Yanchao; Lu, Yaling et al. (2019): Cost-benefit analysis of China's Action Plan for Air Pollution Prevention and Control. In *Front. Eng. Manag.* 6 (4), pp. 524–537. DOI: 10.1007/s42524-019-0074-8. Zheng, Xue-yan; Orellano, Pablo; Lin, Hua-liang; Jiang, Mei; Guan, Wei-jie (2021): Short-term exposure to ozone, nitrogen dioxide, and sulphur dioxide and emergency department visits and hospital admissions due to asthma: A systematic review and meta-analysis. In *Environment International* 150, p. 106435. DOI: 10.1016/j.envint.2021.106435.